Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
-
Subduction zones play a pivotal role in the mechanics of plate tectonics by providing the driving force through slab pull and weak megathrusts that facilitate the relative motion between tectonic plates. The initiation of subduction zones is intricately linked to the accumulation of slab pull and development of weakness at plate boundaries and, by consequence, the largest changes in the energetics of mantle convection. However, the transient nature of subduction initiation accompanied by intense subsequent tectonic activity, leaves critical evidence poorly preserved and making subduction initiation difficult to constrain. We overcome these limitations through a comprehensive analysis focused on Puysegur, a well-constrained extant example of subduction initiation offshore South Island, New Zealand. Through time-dependent, three-dimensional thermo-mechanical computations and quantitative comparison to new geophysical and geological observations, including topography, stratigraphy, and seismicity, we demonstrate that subduction initiation develops with a fast strain weakening described with a small characteristic displacement ( 4 to 8 km). Potential physical mechanisms contributing to the strain weakening are explored and we find that the observed fast weakening may arise through a combination of grain-size reduction within the lower lithosphere and fluid pressurization at shallower depths. With the shared commonality in the underlying physics of tectonic processes, the rapid strain weakening constrained at Puysegur offers insights into the formation of the first subduction during early Earth and the onset of plate tectonics.more » « less
-
Abstract Hadean zircons provide a potential record of Earth's earliest subduction 4.3 billion years ago. It remains enigmatic how subduction could be initiated so soon after the presumably Moon‐forming giant impact (MGI). Earlier studies found an increase in Earth's core‐mantle boundary (CMB) temperature due to the accumulation of the impactor's core, and our recent work shows Earth's lower mantle remains largely solid, with some of the impactor's mantle potentially surviving as the large low‐shear velocity provinces (LLSVPs). Here, we show that a hot post‐impact CMB drives the initiation of strong mantle plumes that can induce subduction initiation ∼200 Myr after the MGI. 2D and 3D thermomechanical computations show that a high CMB temperature is the primary factor triggering early subduction, with enrichment of heat‐producing elements in LLSVPs as another potential factor. The models link the earliest subduction to the MGI with implications for understanding the diverse tectonic regimes of rocky planets.more » « less
-
Plate tectonic reconstructions of three of the best-defined Cenozoic subduction initiation (SI) events in the western Pacific, Izu-Bonin-Mariana, Vanuatu, and Puysegur subduction zones, show substantial components of strike-slip motion before and during the subduction initiation. Using computational models, we show that strike-slip motion has a large influence on the effective strength of incipient margins and the ease of subduction initiation. The parameter space associated with visco-elasto-plastic rheologies, plate weakening, and plate forces and kinematics is explored and we show that subduction initiates more easily with a higher force, a faster weakening, or greater strike-slip motion. With the analytical solution, we demonstrate that the effect of strike-slip motion can be equivalently represented by a modified weakening rate. Along transpressive margins, we show that a block of oceanic crust can become trapped between a new thrust fault and the antecedent strike-slip fault and is consistent with structural reconstructions and gravity models of the Puysegur margin. Together, models and observations suggest that subduction initiation can be triggered when margins become progressively weakened to the point that the resisting forces become smaller than the driving forces, and as the negative buoyancy builds up, the intraplate stress eventually turns from compressional into extensional. The analytical formulation of the initiation time,tSI, marking the moment when intraplate stress flips sign, is validated with a computational models. The analytical solution shows thattSIis dominated by convergence velocity, while the plate age, strike-slip velocity, and weakening rate all have a smaller but still important effect on the time scale of subduction initiation.more » « less
-
SUMMARY The initiation and development of subduction zones are associated with substantial stress changes both within plates and at plate boundaries. We formulate a simple analytical model based on the force balance equation of a subduction zone, and validate it with numerical calculations of highly non-linear, coupled thermomechanical system. With two kinds of boundary conditions with either fixed velocity or fixed force in the far-field, we quantitatively analyse the role of each component in the force balance equation, including slab pull, interplate friction, plate bending and basal traction, on the kinematics and stress state of a subducting plate. Based on the numerical and analytical models, we discuss the evolution of plate curvature, the role of plastic yielding and elasticity, and how different factors affect the timing of subduction initiation. We demonstrate with the presence of plastic yielding for a plate of thickness, H, that the bending force is proportional to H2, instead of H3 as previously thought. Although elasticity increases the force required to start nucleating subduction it does not substantially change the total work required to initiate a subduction zone when the yielding stress is small. The analytical model provides an excellent fit to the total work and time to initiate subduction and the force and velocity as a function of convergence and time. Plate convergence and weakening rate during nucleation are the dominant factors influencing the force balance of the plate, and 200 km of plate convergence is typically required to bring a nascent subduction zone into a self-sustaining state. The closed-form solution now provides a framework to better interpret even more complex, time-dependent systems in three dimensions.more » « less
-
This dataset contains the shear wave velocity model of northern Los Angeles basins, including San Gabriel, Chino, Raymond, and San Bernardino basin. The model domain is a rectangular box, with longitude between 116.90°W and 118.37°W, latitude between 33.90°N and 34.25°N. Details of the files see README file.more » « less
-
Abstract The San Gabriel, Chino, and San Bernardino sedimentary basins in Southern California amplify earthquake ground motions and prolong the duration of shaking due to the basins' shape and low seismic velocities. In the event of a major earthquake rupture along the southern segment of the San Andreas fault, their connection and physical proximity to Los Angeles (LA) can produce a waveguide effect and amplify strong ground motions. Improved estimates of the shape and depth of the sediment‐basement interface are needed for more accurate ground‐shaking models. We obtain a three‐dimensional basement map of the basins by integrating gravity and seismic measurements. The travel time of the sediment‐basementP‐to‐Sconversion, and the Bouguer gravity along 10 seismic lines, are combined to produce a linear relationship that is used to extend the 2D profiles to a 3D basin map. Basement depth is calculated using the predicted travel time constrained by gravity with anS‐wave velocity model of the area. The model is further constrained by the basement depths from 17 boreholes. The basement map shows the south‐central part of the San Gabriel basin is the deepest part and a significant gravity signature is associated with our interpretation of the Raymond fault. The Chino basin deepens toward the south and shallows northeastward. The San Bernardino basin deepens eastward along the edge of the San Jacinto Fault Zone. In addition, we demonstrate the benefit of using gravity data to aid in the interpretation of the sediment‐basement interface in receiver functions.more » « less
-
Abstract We construct a new shear velocity model for the San Gabriel, Chino and San Bernardino basins located in the northern Los Angeles area using ambient noise correlation between dense linear nodal arrays, broadband stations, and accelerometers. We observe Rayleigh and Love waves in the correlation of vertical (Z) and transverse (T) components, respectively. By combining Hilbert and Wavelet transforms, we obtain the separated fundamental and first higher mode of the Rayleigh wave dispersion curves based on their distinct particle motion polarization. Basin depths constrained by receiver functions, gravity, and borehole data are incorporated into the prior model. Our 3D shear wave velocity model covers the upper 3–5 km of the crust in the San Gabriel, Chino and San Bernardino basin area. The Vs model is in agreement with the geological and geophysical cross‐sections from other studies, but discrepancies exist between our model and a Southern California Earthquake Center community velocity model. Our shear wave velocity model shows good consistency with the CVMS 4.26 in the San Gabriel basin, but predicts a deeper and slower sedimentary basin in the San Bernardino and Chino basins than the community model.more » « less
An official website of the United States government
